Introduction

Botany, a natural science concerned with the study of plants, is not considered to be of interest for students of various age groups internationally (Schussler & Olzak, 2008; Bybee & McCrae, 2011; Prokop et al., 2007a, b; Fančovičová & Prokop, 2010). Zoological topics are more attractive for students in comparison with botanical topics (Uno, 1994; Lindemann-Matthies, 2005; Martín-López et al. 2007), in all probability due to the high mobility of animals (Kinchin, 1999) and their phylogenetical similarity with humans. Plant prejudice (Hershey, 1993) and plant blindness, an ignorance of botanical facts and concepts, is also prevalent among students of all age groups (Wandersee & Schussler, 1999; Allen, 2003; Schussler & Olzak, 2008). Furthermore, students often express little interest in plants (Fančovičová & Prokop, 2010; Selvi, 2012) which could be changed for example by means of practical work with plants (Fančovičová & Prokop, 2011b; Ward et al., 2014) and/or with scientific activities with plants (Bokor et al., 2014).

On the first look, low interest in plants may be considered surprising, because plants are all around us and are extremely important for life on Earth (Buhner, 2002). They have been used predominantly as sources of food and medicine by people (Wood, 1997). Plant fruit demonstrates great diversity in colour and size. Fruit served as an important part of the diet of human ancestors (Ungar & Teaford, 2002) and fruit continues to be important in the diet of modern people. Europeans, for example, consume approximately 166 g of fruit and 220 g of vegetables per day (WHO, 2006).

Both empirical (Utto et al., 2006; Holstermann et al., 2010) and experimental work (Thompson & Soýibo, 2002; Prokop et al., 2007) have revealed that hands-on activities enhance positive attitudes toward science and scientists. By analysing the self-reports of students’ experiences and interests with
various hands-on activities, however, Holstermann et al. (2010) found that there were no significant differences in interest between adolescents with experience and those without for most of the examined activities, including the botany topics. Moreover, time shortage, a lack of funding for projects and teaching and learning resources, motivation and expectations are common barriers for teachers who cannot invest all of their teaching time into practical activities with their students (Doyle, 2002; Beath et al., 2012; Heeralal, 2014; Motlhabe, 2014). Thus, a significant part of the learning process is realised with traditional teaching methods. PowerPoint presentations (PPT) in lectures are currently replacing traditional chalk and talk methods (Bartsch & Cobern, 2003; Isseks, 2011). Recent research had indicated that advantages of PPT over traditional methods are doubtful (Amare, 2006; Jones, 2009; Seth et al., 2010), although some research work has revealed that the use of PPT is more advantageous than traditional teaching methods (Trifan & Axinti, 2010; Bartsch & Cobern, 2003). However, no study has examined the effectiveness of PPT with practical work in biology lessons.

A number of evolutionary psychologists have proposed that human memory systems evolved in order to remember certain kinds of information better than others (Nairne et al., 2007). Certain experiments (Nairne et al., 2007; Nairne et al., 2008; Weinstein et al., 2008), where participants were given a surprise recall task after they rated words for their relevance in survival, moving to a new house, planning a bank heist, pleasantness and other contexts, revealed that participants always recalled most of the words in a survival scenario. The mechanisms of adaptive memory, however, are only very recently being utilized in teaching biology (Prokop & Fančovičová, 2014; Štefaníková & Prokop, 2015). It has been shown, for example, that children are able to remember more information about predators which pose a threat to humans than about harmless animals (Barrett & Broesch, 2012; Štefaníková & Prokop, 2015). Similarly, the toxicity of fruits is better remembered by children than, for example, their naming or occurrence (Prokop & Fančovičová, 2014). The presence of fruits within a sample of plants may also have a learning advantage, because fruits were, and still are beneficial for survival.

Present research examined how the presence and colour of fruits in samples of plants, survival relevant and irrelevant information about plants, teaching method (traditional oral presentation vs. PPT) and plant toxicity influence children's memory tests about plants. It is also examined whether the aforementioned variables influence children's interest in plants. It is hypothesized that the presence of fruits in samples of plants will enhance information retention more than using samples of plants without fruits and/or when plants will be presented in the PPT. Red fruits were expected to enhance memory tests better than dark fruits, because this colour is a cue of ripening. Furthermore, survival-relevant information (toxicity/edibility) will mediate information retention. Finally, it is hypothesized that the aforementioned variables influence children's interest in plants.

Methodology of Research

The participants were randomly assigned as whole classes to one of four treatments. Presence and absence of fruits, the toxicity/edibility of fruits and type of presentation (traditional oral presentation or using the PPT) was handled across treatments. Memory tests were applied before the experiment in order to control possible pre-existing differences in knowledge about plants between treatments. Further two memory tests (post-test and retention test) were applied after the experiment in order to examine the durability of acquired knowledge. Finally, participants rated interest in each plant species to test possible influences of treatments on their interest in plants.

Participants

The sample of 151 participants (82 females and 69 males) consisted of 10-13-year olds attending five Slovak secondary schools. The mean age of the participants was 11 years (SE = 0.67). This age group of participants was chosen because they had experience with the botany course which is taught in grades 5 and 6 (age 10/12). Additional information about the participant's age and sex were collected.

Species Selection and Procedure

All the plants were collected in local parks where they frequently occur. The plants were collected based on their fruit colour and toxicity. The set of plants was selected in order for there to be an equal numbers of plants
which are toxic and non-toxic for children (Table 1). 7 toxic (4 red fruit, 3 dark fruit) and 7 edible (4 red fruit, 3 dark fruit) species were selected for the research purposes. A basic precondition for species selection was their availability in the study area. All the plant samples were first photographed, then their fruits were removed and the samples were photographed once again (Figure 1). According to current school curriculum, participants should be aware only about two of all selected species (Sambucus nigra and Partherocissus quinguefolia).

| Table 1. Description of the plants used in the research |
|----------------|-----------------|----------------|----------------|----------------|
| Toxicity | Colour | Origin | Latin name | English name | Slovak name |
| Edible | Red | Outside Europe | Berberis vulgaris L. | Common Barberry | Dráč obyčajný |
| Europe | | | Hippophae rhamnoides L. | Sea Buckthorn | Rakytík rešetliakovitý |
| Dark | Outside Europe | Aronia melanocarpa Michx. Ell. | Black chokeberry | Aронія чіерноплодна |
| Europe | | | Prunus spinosa L. | Blackthorn | Сливка темна |
| Toxic | Red | Outside Europe | Contoneaster horizontalis Decaisne | Rockspray Cotoneaster | Скалнік розперетий |
| Europe | | | Euonymus europaeus L. | European spindle | Брушень європейський |
| Dark | Outside Europe | Mahonia aquifolium (Pursh) Nutt. | Holly-leaved Barberry | Mahónія чезмінолистá |

14 samples of plants were presented in Real treatments and identical photographed samples in a PowerPoint presentation with 14 photos of the plants (Figure 1). Both treatments were divided into groups with and without fruits. The background for the photograph was white and the size of the plants was standardised to a similar length and colour contrast. Each slide presented in the PPT Fruit + treatment contained two photographs. One photograph was a plant with fruit and the second photograph was a detail of the plant’s fruit. In the PPT Fruit - treatment, the plant photograph did not contain fruit and the second photograph was a detail of the plant’s leaf. All the photographs were made from the same plant samples. They were originally collected with the fruit and photographed and later, after the removal of the fruit, photographed once again.

The participants were randomly divided into 4 groups. In the Real Fruit + group (22 females and 13 males), the participants received an oral presentation with freshly collected plants with fruit. In the Real Fruit – group (17 females and 15 males), the participants received an oral presentation with freshly collected plants without fruit. In the PPT Fruit + group (19 females, 21 males), the participants received an oral presentation, but the plants were frontally presented with the PPT presentation. In the PPT Fruit - group (24 females, 20 males) participants were instructed in the same way as in the PPT Fruit + group, but the plants presented in the PPT presentation lacked fruit. All the participants were volunteers and unaware of the hypotheses.
Figure 1: An example of photographs showing a live plant (*Aronia melanocarpa*) with (a) and (b) without fruits.

Oral Presentations

All the presentations were made by their biology teacher, who was trained by the authors of this paper. Each picture with the given plant was presented for up to 2 min. During this time, the participants received oral information about the Slovak name of the plant, occurrence and toxicity (toxic or non-toxic). The oral presentation lasted approximately 30 min. Each group of participants received one oral presentation.

Memory Tests

A pre-test was administered to the participants from all the treatments one week before the experiment and a post-test was applied immediately after the lecture. The validity of the research instrument was established by Prokop and Fančovičová (2014). The same plants were used in the pre–test, post–test and retention test. In order to preserve the plant samples alive, they were stored in a fridge. In the pre-test, the participants were shown all 14 plant species and asked to respond to 5 items: (1) What is the name of the plant? (open-ended), (2) Have you ever seen this plant before? (1 = never, 5 = definitely yes) (3) How interested are you in this plant? (1 = not at all,
5 = very much so), (4) Do you think this plant is toxic? (yes, do not know, no), and (5) Does this plant come from Europe? (yes, do not know, no). The correct responses to the last two questions were coded as correct (level 3), partially correct (level 2) and incorrect (level 1) (Cronbach alpha = 0.72).

The surprise memory test (hereafter post-test) was performed immediately after the oral presentation finished. The participants were, once again, shown all the 14 species of plants and asked to respond to the same items as in the pre-test except for the second question (Have you ever seen this plant before?) (Cronbach alpha = 0.76).

The retention test was applied 14 days after the oral presentations and contained three items identical with the post-test: What is the name of the plant? (open ended) Do you think this plant is toxic? (yes, do not know, no), and Does this plant come from Europe? (yes, do not know, no) (Cronbach alpha = 0.75).

The presentation of living plants and plants in the PPT was randomized between the tests (pre-test, post-test, retention test). The participants were assured that the research was not a test, but only involved researcher’s interest in what they know about certain plants. After the research was completed, the participants were debriefed about the research goals. The participants in each treatment were tested in eight independent school classes.

Statistical Procedures

A 2 (treatment) × 2 (presence of fruit) × 2 (fruit toxicity/edibility) × 2 (red/dark colour) × 3 (type of test [pre-test, post-test, retention test]) × 3 (type of question [naming, toxicity and occurrence]) Generalized Linear Mixed Model (GLMM) was performed in order to investigate whether these variables influenced the mean scores of the information retention tests or the mean scores of interest in each plant (dependent variables). The participant’s identification number (ID) was treated as a random factor in order to avoid pseudoreplication of the results. Interest in the plants was examined by summing up all the interest data into one composite score separately calculated for the pretest and posttest (dependent variable) by a multivariate analysis of variance (MANOVA). The effects of gender and age were never significant in the case of the memory tests (main effects: F(1,145) = 1.2 and 0.45, p = 0.28 and 0.5, respectively) as well as in case of the interest scores (main effects: F(1,145) = 1.19 and 3.24, p = 0.28 and 0.07, respectively), thus these variables were not included in the statistical analyses. The two-way interaction terms were defined for the effect of the treatment with all the remaining categorical predictors listed above. This selection was intentional, since it was necessary to reduce the large number of interaction terms providing additional information which went beyond the primary aims of this study.

Results of Research

Real Experiences and the Presence of Fruit in the Memory Tests

There was no significant main effect of treatment on information retention among participants (F(1,5384) = 0.44, p = 0.51), meaning that participants with experience with living plants had similar information retention scores as participants who experienced the PPT. There was, however, a significant main effect of the presence of fruit on the participants’ mean scores concerning plants (F(1,5384) = 25.24, p < 0.001) suggesting that the presence of fruit positively influenced memory tests (Figure 2). This effect was particularly apparent for the Treatment × Real Fruit (F(1,5384) = 7.68, p = 0.006, Figure 1). With respect to the Treatment × Fruit toxicity interaction (F(1,5384) = 135.56, p < 0.001), edible fruits received a significantly higher score than toxic fruits in the PPT treatment (analysis of contrasts, p < 0.001), although in the real treatment both edible and toxic fruits scored similarly (analysis of contrasts, p > 0.05). The interaction term Treatment × Fruit colouration was not statistically significant (F(1,5384) = 1.4, p = 0.24).
The numbers inside the bars are the sample sizes. *** p < 0.001, NS = not statistically significant.

Effects of the Type of Test, Fruit Toxicity and Fruit Colours on Memory Tests

The type of test significantly influenced participants' memory scores (F(2, 5384) = 99.54, p < 0.001). The participants received the lowest score in the pretest and the highest score in the posttest. The score of the retention test was somewhere in the middle between the pretest and retention test score (Figure 3). Edible fruit were remembered better by participants compared with toxic fruit (F(1, 5384) = 71.42, p < 0.001). Regarding fruit colouration, dark coloured fruit received higher scores than red fruit (F(1, 5384) = 19.79, p < 0.001).

The Effect of the Type of Question on the Memory Tests

Significant differences in information retention with respect to the three types of questions (naming, toxicity and occurrence) (F(1, 5384) = 58.6, p < 0.001) were found. An analysis of the contrasts revealed that there were only no significant differences between the mean scores of naming and the occurrence on memory scores (p = 0.44). The participants' mean scores concerning the toxicity of fruits were significantly higher, however, than the mean scores of the remaining two types of questions (Figure 4).
Factors Influencing Interest in the Presented Plants

Primary effect of treatment of the interest in the plants (F(1,145) = 4.37, p = 0.04) was significant suggesting that participants in the treatment with living plants had a greater interest in the plants (M = 3.5, SE = 0.1, N = 67) than the participants in the treatment with PPT (N = 3.18, SE = 0.09, N = 84). The main effects of the presence of fruit, type of test, toxicity of the presented plants and the colour of fruit were not statistically significant (F(1,145) = 0.59, 1.59, 0.07 and 1.9, all p > 0.16, respectively). A highly significant interaction type of test × treatment (F(1,145) = 25, p < 0.001) suggests that the participants in the treatment with living plants increased their interest in the posttest, while interest in plants in the group with the PPT remained unchanged (Figure. 5). Additional differences were not statistically significant.

Figure 4: Mean scores of the memory tests with respect to the type of question.
*** p < 0.001.

Figure 5: Mean scores of interest in the plants with respect to the type of test and treatment.
*** p < 0.001.
Discussion

Present research examined the influences of the presence of fruits, their colours, toxicity, survival-relevant and irrelevant information influence of information retention and interest in the plants. The effects of practical work versus PPT on memory scores concerning plants were additionally compared. These results suggest that the use of living plants with their fruit is more beneficial than the PPT in terms of obtaining knowledge and increasing student’s interests in plants.

Students who worked with living plants with fruit scored higher in memory tests compared with other students. This result is in agreement with research indicating that hands-on activities with plants positively influence knowledge and attitudes toward them (Fančovičová & Prokop, 2011b; Ward et al., 2014). This knowledge is extended by adding to the literature that not only living samples of plants may be stimulating for children (Tunnicliffe & Reiss, 2000) but specifically the presence of their fruit. When considering only plants without fruit, no significant differences occurred in memory tests between groups with living plants and those with a PPT. The positive influence of fruit occurred in all probability because fruit played an important role in human survival throughout the evolutionary history (Ungar & Teaford, 2002; Prokop & Fančovičová, 2012).

This study also contributes to the emerging theory regarding the use of PPT in teaching (Bartsch & Cobern, 2003; Ilseks, 2011). In the present research, the use of the PPT yielded similar memory scores as compared with the use of realia, but only when the presence of real fruit in the plant samples are not considered. The use of the PPT is consequently advantageous (Trifan & Axinti, 2010) because this method is inexpensive and a less time consuming method compared with hands-on activities. Direct experience with plants containing fruit was, in contrast, more beneficial for students in terms of obtaining knowledge about plants. Most importantly, hand-on activities resulted in an increased interest in plants (Fančovičová & Prokop, 2011b), while the use of PPT did not produce similar results. From this perspective, the use of realia are more beneficial than the PPT. It is conceivable that Holstermann et al. (2010) could not find any differences in interest between students with and without experience with certain botanical topics familiar to the present research (e.g., classifying trees and shrubs, assigning flowers to their families), due to absence of the higher age of participants in their study (16 year olds) in whom interest in science decreases (Osborne et al., 2003).

Participants remembered information about edible plants better when compared with toxic plants. Prokop & Fančovičová (2014) also found that students had the best memory scores when answering questions about non-toxic fruit, but only when the fruit colour was red. When considering the fruit colour, the memory scores of plants with dark fruit were better than the scores with red fruit. The better scores associated with red fruit would be, however, more predictable, because red fruit seem to have a higher aesthetic value for people than fruit of other colours (Prokop & Fančovičová, 2012). Further research should make use of the standardized sizes of displayed fruit since their size could be a confounding factor (Prokop & Fančovičová, 2014).

The empirical study by Fančovičová & Prokop (2011a) found that children have a better knowledge about plants with edible fruit compared with toxic fruit. Interestingly, however, the toxicity of plants was remembered better than the survival-irrelevant information (the naming and occurrence of the plants). Similar patterns were found in recent experimental research with plants (Prokop & Fančovičová, 2014) as well as with animals (Barrett & Broesch, 2012; Štefaniková & Prokop, 2015). It is suggested that information concerning plant toxicity increases children’s attention more than survival-irrelevant information which is in agreement with experiments on adaptive memory (e.g., Nairne et al., 2007; Nairne et al., 2008; Weinstein et al., 2008). Children may later use information about whether the particular fruit is edible in real life (Fančovičová & Prokop, 2011a).

Conclusions

To conclude, this research demonstrated that work with living plants is more advantageous in terms of improving children’s knowledge and attitudes as compared with the PPT. Cues associated with survival in the evolutionary past, namely work with fruit and information about health risks significantly contribute to knowledge acquisition. The use of realia are therefore recommended more than the use of the PPT. Future research may benefit from examining possible influences of the sizes of fruits or their taste on participant’s interest or knowledge. It is to be hoped that evolutionary oriented approach may be useful in teaching botany in schools.
Acknowledgments

David Livingstone improved the English. This research was funded by a grant from Trnava University in Trnava No 3/ TU/2015.

References

Received: December 23, 2015

Accepted: February 09, 2016

Pavol Prokop
PhD., Associate Professor of Biology at the Department of Biology, Faculty of Education, Trnava University, Priemyselna 4, 918 43 Slovakia.
E-mail: pavol.prokop@savba.sk

Dominika Majerčíková
Mgr., PhD Student at the Department of Biology, Faculty of Education, Trnava University, 845 06 Trnava, Slovakia.
E-mail: dominika.neupauerova@tvu.sk

Zuzana Vyoralová
PhD., Primary Teacher, Elementary School, Vajanského 2, 909 01 Sklaca, Slovakia.
E-mail: zcica@azet.sk