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Among the mathematical methods which are taught in the last years of almost every high school, the math-
ematical induction deserves particular attention. It can be used both to define mathematical entities and to prove 
theorems. The second use is more common at high school level and is easier. Thus, I will basically focus on it, though 
analysing in depth two definitions by induction. The aim of this contribution is to offer the basic elements for a 
didact unit which could be developed in six/seven hours of lesson. 

As a method of proof, the principle of mathematical induction is formulated as follows. Base: if a property P 
holds for the number 1 and if, step of the induction, , then P holds for every natural number. 
The reasons of interest behind this method are:

1) its meaning and its connection to infinity;
2) its link with empirical induction and with science education;
3) its use;
4) equivalent formulations of the principle.
All these four items are of considerable educational importance: 1) and 2) for general conceptual reasons; 3) 

because of specific mathematical reasons; 4) for the connection between logic and mathematics. 

Meaning of the Principle of Mathematical Induction and Its Connection with Infinity

The intuitive idea upon which the principle of mathematical induction relies can be explained in this way: 
suppose that a theorem T concerning natural numbers has to be proved and also suppose that, by means of prac-
tical calculations, we know that this theorem is true for the number 1 or for a set of initial numbers. Under these 
conditions, why is one allowed to deduce that it is sufficient to prove the inference from T(n) to T(n+1) to be sure 
that T holds for all the natural numbers? A student is legitimate to ask this question. Suppose that one has proved 
that . Name  the number n+1. Then, with the same reasoning used to prove the inference 
from T(n) to T(n+1), one infers  from . But . It is now obvious how to continue: 
one poses  and applies the same reasoning so to reach . In this way 
every number is reached, so that the theorem holds for every natural number. This is the intuitive meaning of the 
principle of mathematical induction. 

The connection with infinity is a fundamental trait of this method. As a matter of fact, if we were interested 
in proving a theorem only for a finite set of numbers, we could proceed by verifying its validity for every single 
number. A long time is necessary if the set of numbers has a great dimension, or if the property we want to prove 
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implies complicate calculations, but, in principle, nobody could prevent us from using such technique. This is not 
true anymore when the set of numbers in which we are interested is infinite. In this situation, to prove our theo-
rem for single cases, however numerous these cases might be, is useless; we need a general method of proof, as 
mathematical induction. This is the reason why such a procedure is strictly connected to the potential infinity of 
the series of whole numbers. This aspect has to be highlighted in an educational context. 

Link between Mathematical Induction and Empirical Induction

This issue concerns the relations between the term “induction” in mathematics and in sciences. Therefore, 
its development is significant for the learners to understand the analogies and the differences between the logic 
behind mathematics and empirical science. Thus, it is crucial not only for the reflection on maths education, but 
for science education, as well. Empirical induction is based on the attempt to obtain a general law from a series of 
single cases which take place without any exception. This perfectly makes sense in a physical context (with regard 
to the relation between conceptual and empirical aspects of physics education, see, e.g., Bussotti, 2021; Chen, et 
al., 2020; Truyol, et al., 2014). For example, given some well-known conditions, mechanic energy is conserved in 
all the numerous cases we have experienced. Therefore, we are allowed to induce the conservation of energy to 
be a general law. Of course, in mathematical physics many propositions are deduced as theorems like in abstract 
mathematics, but the truth of the basic principles is inferred by induction. It is paramount that the learners un-
derstand that such an inductive principle has no value in mathematics. Specifically, in the theory of numbers, it is 
useless to know that a proposition holds without exception for all the single cases we can calculate. A formal and 
general proof is necessary. This clarified, it is spontaneous to wonder why a mathematical method includes the 
name “induction”. The answer is that our procedure can be applied only if the proposition P we are going to prove 
is empirically valid for a base, which is in general, but not necessarily, the number 1, namely P(1) holds. This is the 
inductive aspect: a concrete case in which P is valid has to be found. For let us suppose that one is able to infer the 
truth of  from the truth of , but is unable to verify that a k exists such that  holds. What could 
he infer? He has proved only a hypothetical proposition: if  is true, then  is true, but no categorical 
one. In contrast to this, if one is able to show that P(k) is true and that, for n>k, , then P is true 
for every number bigger than k, given the arbitrariness of n and the reasoning expounded in the previous section. 
If k=1, P is true for every integer. Therefore, the term “induction” is justified by the fact that the proposition to prove 
has to be empirically valid for a number (generally 1). The conjunction of the inductive basis and the inferential 
step from n to n+1 makes mathematical induction a true demonstrative method, which has only an analogical 
connection with the empirical induction, but whose logic is completely different.  

Use of the Principle of Mathematical Induction

Let us see three, among numerous, examples which show how to use the principle of induction. it is advisable 
for each teacher to present examples with an increasing degree of difficulty in order to train students to reason by 
induction and to make them understand the wide use of this method. 
1) Prove that for every natural number n≥1, the sum of the first n squares is equal to 

Base:  with n=1
Step: Suppose that the identity  holds. Add  to each member. On the left 

one obtains . On the right, it is 

=
 

.

Therefore, the theorem is proved.

2) Prove that for every natural number n≥1,   
Base: , with n=1
Step: For inductive hypothesis, it is  Multiply each member by 2. One obtains 

. Therefore, a fortiori,  This proves the proposition.
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3) Prove that, for every natural number n>1, it is 

Base: if n=2, one obtains , which is not a rational number. Note that in this case, because of the conditions 
of the problem, the inductive basis cannot be referred to n=1.

Step: Suppose the proposition to be true for n and let us prove that it is also true for n+1.
Take into account that the following identity holds:

=

Suppose ad absurdum that  is a rational number and set , so that 

Therefore, it would be . But this is absurd because, for inductive hypothesis,  is an irrational 
number. Thus, the proposition is true.

This example is interesting because it shows that the induction basis is not necessarily referred to n=1 and 
that mathematical induction can also be associated with an ad absurdum deduction.

In order to show the richness of the concept of mathematical induction, let us see two easy examples of 
series defined by induction or by recurrence. In this case our principle is used to define an object rather than to 
prove a theorem.

1) In the 12th chapter of his celebrated Liber Abaci (1202, second edition 1228) Leonardo Pisano told Fibonacci 
(about 1175-1245) posed the following problem: “How many couples of rabbits are produced in one year starting 
from a single couple, if every month each couple gives birth to a couple which becomes fertile from the second 
month of her life”?

In January there is an only couple. Since she is not fertile, in February there is a single couple, as well. In March 
she becomes fertile, so that we have two couples. In April, the first couple is fertile, but the second is not, so that 
we have three couples. In May the first two couples are fertile, but the third is not. Thence, we have five couples: 
the three existing in April, that generated by the first couple and that generated by the second couple. The logic 
of the reasoning is now clear: the number of couples existing at the month m is given by the sum of the number 
of couples existing at the month m-1 plus the number existing at the month m-2. Let us indicate the general term 
of this progression by , where i indicates the number of months. Such a progression can be defined by induction 
or recurrence as follows:

Thus, the numbers of the sequence are 1,1,2,3,5,8,13,21,34,55, …
This is a classical case of a definition by recurrence because  is the inductive base of the definition 

and  is the inductive step. 
The series of Fibonacci has many interesting applications which are of educational interest because they 

connect mathematics with other sections of science. Let us consider the following example: among the bees, the 
drones are generated for parthenogenesis by the queen, while the females are generated by the queen mating 
with a drone. Thus, the drones have one parent, the females have two parents. A drone has two grandparents – a 
female and a male –, three great-grandparents – two females and one male –. Therefore, a drone has  predeces-
sors of n-th generation of which  are females and  are males, if  is considered the drone itself. Thus, 
the genetic tree of a drone is represented in each branch by a number belonging to the Fibonacci sequence, as 
also clarified in Figure 1.
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Figure 1
The Genetic Tree of a Drone

From a mathematical point of view, the Fibonacci numbers have interesting properties. For example, two 
consecutive of them are mutually prime. They are also connected with the golden ratio: a segment is defined to be 
divided in extreme and means ratio if the ratio between the bigger and the smaller part of the segment is equal to 
that between the whole segment and its bigger part. If we indicate by x the bigger part of the segment, by 1 the 
smaller, the whole segment is x+1, thus the required proportion is 

which is the equation , whose positive solution is . If this number is developed 
into a continuous fraction, one can check that the numerator of each convergent is the i-th Fibonacci number and 
its denominator the (i-1)-th Fibonacci number. 

Thus, this progression defined by recurrence has many applications in mathematics and in scientific branches 
different from mathematics, which is an important educational aspect that is appropriate to develop. 

2) Let us consider the series defined as follows:

Many properties can be proved on this series relying upon its definition by recurrence.
First of all, it can be proved that the series is well defined, namely that  is not negative. This is true 

thanks to a reasoning by induction because  and if , then  is well defined as 
.

A further information we can infer by induction is that each term of this series is less than 2. For,  and 
if , then .

Let us now prove that our series is increasing: indeed  means that , that is 
, which is the case if , and this is true because every term of the series is less than 2.

Thus, this series is positive, increasing and is superiorly limited by 2. Therefore, its limit is a number . The 
only possible values of L are obtained by solving the equation , that is , whose solu-
tions are  and . Since the sequence is positive, its limit is L=2 (example drawn from Finzi-Vita, 2009). 

This example is important from an educational point of view because it shows the profound link between 
the definitions by recurrence and the proofs by mathematical induction. For the features of this series, which is 
defined by recurrence, are obtained through mathematical induction. 
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Equivalent Formulations of the Principle

The concept of logical equivalence is significant from a conceptual and educational standpoint. Two de-
monstrative methods are logically equivalent if, given a proof through a method, it is possible to transcribe it in 
a proof by the other method and reciprocally. The relation between logical equivalence and the real use of two 
logically equivalent methods in mathematics is a complicated topic, which is not appropriate to face in this context. 
Therefore, I only mention three equivalent formulations of mathematical induction: 1) infinite descent; 2) strong 
induction; 3) least number principle.

Infinite descent. It is an ad absurdum reasoning: a theorem T concerning natural numbers has to be proved. 
Suppose T to be false and that, hence, is true. If this assumption implies that between two natural numbers 
an infinite quantity of numbers exists, this is absurd. Hence, ¬T is false, and T is true. 

The easiest example of a theorem proved by infinite descent is also the first historical one: Euclid in his Ele-
ments, Book VII, Proposition 31 proves that every composite number is divided by a prime number. Be given a 
composite number p. Suppose that p is not divided by any prime number. Be  and  two divisors of p. Given 
the ad absurdum hypothesis, none of them is prime or divided by a prime number. Consider . It cannot either 
be prime or be divided by a prime number. Thence, it is divided by two composite numbers  and . None of 
them can be prime, and so on. In this way, an infinite descent of numbers between p and 1 should exists. But this 
is absurd because only p-1 numbers exist between p and 1. Thus, the theorem is proved.

The method of infinite descent was rediscovered by Fermat (1601-1665), who applied it to several difficult 
problems in number theory. For example: a) the area of no Pythagorean triangle can be the square of an integer; 
b) every prime of the form 4n+1 is the sum of two squares; c) the equation   has no integral solu-
tion apart from the trivial ones; d) every integer is the sum of four squares. Fermat left an explicit proof only of the 
theorem a). After Fermat, Euler (1707-1783) and Lagrange (1736-1813) used extensively this method and some 
variants of which Fermat had spoken (see, e.g., Bussotti 2006). Today this method is used especially in number 
theory and abstract algebra.     

The infinite descent is more easily applicable to problems concerning prime numbers than mathematical 
induction, because it does not imply the step from n to n+1, which is generally useless if one deals with prime 
numbers. Rather, the assumption that the theorem to prove is false implies the existence of a form which maintains 
its mathematical structure during the descent but represents progressively decreasing numbers. This form can be 
repeated at infinity, but between two numbers only a finite quantity of numbers can exist. Such logical structure 
is often more malleable than mathematical induction. This is the reason why it is inappropriate to see the infinite 
descent as a reversed induction.   

Strong mathematical induction. Like in mathematical induction, in this method, there is a base for which the 
proposition to prove is true. The difference is that for the inductive step from n to n+1 one has to assume the 
proposition to be true not only for n, but for all the integers less than n+1. 

Example: Every positive integer n can be written as a sum of distinct nonnegative integer powers of 2. Base: 
since , the theorem is true for n = 1. Step. Suppose that every number less than or equal to n be written as sum 
of distinct powers of 2. Let us prove that also n+1 can be written in this form. Let l be the largest integer such that 

. Set . Since 2l ≥ 1, it is m < n + 1. Then by the strong inductive hypothesis, there are dis-
tinct integers  such that . Therefore, it is 
. Now, it is only necessary to verify that l is different from each . Suppose ad absurdum that an index j exists such 
that . Under this hypothesis . Hence . In this case  would 
not be the largest power of 2 less than n+1. But this is in contradiction with our assumption. Thence, the proposi-
tion to prove is true (this example is drawn from Radcliffe, without date, pp. 8-9). 

This proof is of extreme interest because in its final part where the ad absurdum reasoning is developed, a 
further principle logically equivalent to mathematical induction is used: the least integer principle, which states that 
if a property is true in integers, there exists the smallest number for which it is true. This principle, which was for 
the first time employed by Lagrange, is used in an ad absurdum reasoning. Suppose one has to prove a theorem 
T. Suppose  to be true. Then the smallest number for which  is true must exists. Set this value equal to m. 
During the reasoning it is shown that another value less than m exists for which  is true. This contradicts the 
initial hypothesis, thence T is true. As a matter of fact, in the proof of the analysed example a principle which might 
be called of the biggest integer principle is applied because  should be the biggest integer less than n+1, but we 
discover that  should also be less than n+1, which contradicts our hypothesis. Obviously, the logic behind 
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the least and biggest integer principle is the same: a number should have and at the same time should not have 
a certain property, but this is absurd.

The principles of strong induction and of the least integer are fundamental in many branches of mathemat-
ics, as in abstract algebra where many propositions concerning group, ring and field theories are proved through 
these methods. For example, it is possible to prove by strong induction the fundamental Cauchy theorem of group 
theory that given a group G and its order O(G), if a prime p divides O(G), then G contains an element of order p. 
Among the numerous proofs of Sylow theorem that if p is a prime and  divides O(G), then a subgroup of order 

 exists in G, one is given by strong induction. The least integer principle is, for example, used to prove that 
two Abelian groups of order  are isomorphic if and only if they have the same invariants. In ring theory this 
principle is used to prove that if R is a Euclidean ring and A is an ideal of R, an element   exists such that A is 
composed of the elements whose form is ax, when x varies in R. In the theory of the invertible elements belonging 
to a Euclidean ring, strong induction and least integer principle are also extensively used. Further examples could 
be offered, but these are sufficient.

Summing-up

In this editorial a didactic unit has been proposed. Here only the basic elements have been given. The unit 
might be enriched by tracing the history of the inductive principle, which is interesting and formative from an 
educational standpoint (see, e.g., Palladino-Bussotti 2002). From an epistemological-methodological perspective, 
it should be pointed out that mathematical induction is a method of proof, but not a method of discovery. It is not 
a heuristic procedure. The presentation of an organised set of lessons on the principle of mathematical induction 
is significant and appropriate in the last years of high school because: 1) it introduces the learners within a method 
typical of whole numbers; 2) it connects mathematical issues with logical ones; 3) it is useful in order to clarify the 
difference between the way of reasoning connoting mathematic and that typical of empirical sciences. Hence, it 
is also useful in a science education context; 4) it can be related to the history of mathematics, so as to show that 
mathematics is also a humanistic discipline, born from conceptual problems, and not only a technical one; 5) it has 
also connection with epistemological themes linked to the heuristic of mathematics.  
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